A One-dimensional Double-chain Compound Constructed from Ce^{III} Cations and $[\alpha\text{-SiW}_{11}O_{39}]^{8\text{-}}$ Anions: Synthesis, Crystal Structure and Magnetic Properties

Mi-Xia Hu, Ya-Guang Chen, Dong-Mei Shi, Hai-Jun Pang, and Chun-Jing Zhang

Key Laboratory of Polyoxometalates, Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China

Reprint requests to Dr. Yaguang Chen. E-mail: chenyg146@nenu.edu.cn

Z. Naturforsch. 2008, 63b, 968 - 972; received April 8, 2008

A polyoxometalate compound consisting of monovacant Keggin anions and trivalent lanthanide cations, $K_2H_2\{Ce(H_2O)_6[Ce(H_2O)_2(\alpha-SiW_{11}O_{39})]\}_2\cdot 26H_2O$ (1), has been synthesized and characterized by elemental analysis, IR and UV spectroscopy, TG analysis, and single crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system with space group $P\bar{1}$. The coordination of the monovacant Keggin anions and the Ce^{3+} ions creates a double-chain structure. The K^+ cations link the double-chains to form corrugated layers, and the layers are further connected into a 3D architecture through hydrogen bonds. A variable temperature magnetic study indicates antiferromagnetic coupling in compound 1.

Key words: Monovacant Keggin Anions, Lanthanide Cations, Double-chain Structure, Antiferromagnetic Coupling

Introduction

Because of their wide range of topologies and a multitude of interesting properties, the polyoxometalates (POMs) have attracted increasing attention over the past decades [1, 2], and have found applications in fields like catalysis, medicine, analytical chemistry, separation science, molecular electronics, etc. [3-7]. To date, the famous Keggin anion $[XM_{12}O_{40}]^{n-}$ and its derivatives have been studied most owing to the electronic versatility and structural diversity [8]. It is well known that monovacant Keggin POMs are easily obtained by removing one WO⁴⁺ unit at a special pH value of their solutions [9]. These species have great ability to bind transition metal and rare-earth metal cations at their defect sites [10]. Compared with transition-metal cations, rare-earth ions with larger sizes and higher coordination numbers are suitable for linking polyoxoanions together to form new classes of structures. After Peacock and Weakley's preparation of $1:2 [Ln(SiW_{11}O_{39})_2]^{13-}$ complexes [10b], the crystal structures of the 1:2 lanthanide α -undecatungstosilicate complexes [Ln- $(\alpha - \text{SiW}_{11}\text{O}_{39})_2$ ¹³⁻ (*Ln* = Nd³⁺, Pr³⁺, Ce³⁺) were reported in 1991 [11]. Pope and coworkers synthesized two one-dimensional zigzag chain-structured

compounds of the type $[Ln(\alpha-SiW_{11}O_{39})_2(H_2O)_3]^{13}$ $(Ln = La^{III}, Ce^{III})$ [12]. In 2003, Mialane and coworkers reported the solid state structures of 1:1-type $Ln[\alpha-\text{SiW}_{11}\text{O}_{39}]^{8-}$ ($Ln = \text{Eu}^{\text{III}}$, Gd^{III} , Yb^{III}) and 2:1-type $[Nd_2(\alpha-SiW_{11}O_{39})(H_2O)_{11}]^{2-}$ complexes and found that the difference of the structures is strongly dependent on the lanthanide cations used [13]. Furthermore, $[{Er(H_2O)_6[Er(H_2O)_3-}$ $(\alpha - SiW_{11}O_{39})]_2]^{4-}$ [14], $[\{Sm(H_2O)_7[Sm(H_2O)_2 - M_2O]\}_2]^{4-}$ (DMSO)(α -SiW₁₁O₃₉)]}]²⁻ [15] and [$Ln_2(\alpha$ -SiW₁₁O₃₉)(H₂O)₁₁]²⁻ (Ln = Ce, La) [16] exhibit structures analogous to $[Nd_2(\alpha-SiW_{11}O_{39})(H_2O)_{11}]^{2-}$ [13]. A 1D infinite chain-like structure [(Pr(H₂O)₄SiW₁₁O₃₉)- $(NaPr_2(H_2O)_{12})(Pr(H_2O)_4SiW_{11}O_{39})]^{3-}$ [17] and dimeric $K_{12}[(SiW_{11}O_{39}Ln)_2(\mu-CH_3COO)_2]$ (*Ln* = Gd^{III}, Yb^{III}) [18] complexes have also been reported. All the above studies indicate the combinatorial diversity between the lanthanide cations and the monovacant Keggin-type polyanions. Therefore, to explore new combination modes of monovacant Keggin-type POMs and Ln^{III} ions is a very interesting challenge. Herein, the synthesis, thermogravimetric analysis, spectroscopic, variable-temperature magnetic and structural characterization of the compound $K_2H_2\{Ce(H_2O)_6[Ce(H_2O)_2(\alpha-SiW_{11}O_{39})]\}_2 \cdot 26H_2O$ (1) are reported. To the best of our knowledge, this is

0932-0776 / 08 / 0800-0968 \$ 06.00 © 2008 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

the first example of a one-dimensional double-chain structure constructed from monovacant POMs and lanthanide cations.

Results and Discussion

The asymmetrical unit of 1 consists of one anion $[Ce_2(H_2O)_8(\alpha-SiW_{11}O_{39})]^{2-}$ (Fig. 1), one K⁺ cation, and a large number of water molecules. In the two crystallographically unique cations, Ce(1) resides in the vacant site of the $[\alpha$ -SiW₁₁O₃₉]⁸⁻ anion (d(Ce-O) 2.427(16) - 2.474(16) Å), and is additionally coordinated by two adjacent $[\alpha-SiW_{11}O_{39}]^{8-}$ anions via terminal oxygen atoms (O24 and O25) (d(Ce-O_d) 2.481(16) and 2.561(16) Å). Note that the linkage of $[\alpha\text{-SiW}_{11}O_{39}]^{8-}$ anions and $Ce(1)^{3+}$ cations leads to a zigzag chain directed along the a axis, which is similar to the structure of $[Ce(\alpha-SiW_{11}O_{39}) (H_2O)_3]^{5-}$ [12], $[Eu(\alpha\text{-}SiW_{11}O_{39})(H_2O)_2]^{5-}$ [13] and $[Eu(H_2O)_4PW_{11}O_{39}]^{4-}$ [19]. However, the Ce (1) cation is coordinated by two water molecules (d(Ce- OH_2) 2.543(17) and 2.568(17) Å) rather than three water molecules, which is different from the coordination in $[Ce(\alpha-SiW_{11}O_{39})(H_2O)_3]^{5-}$ [12]. The eight oxygen atoms coordinated to the Ce(1) cation form a bicapped trigonal prism (Fig. 2), which is one of the common coordination arrangements for complexes with a coordination number of 8 [20, 21]. The groups of O14, O21, O40 and O8, O11, O17 form the two trigonal planes, while the two terminal oxygen atoms (O24, O25) from the $[\alpha\text{-SiW}_{11}O_{39}]^{8-}$ anions occupy the cap sites.

The Ce(2) cation is coordinated to the $[\alpha\text{-SiW}_{11}\text{-}O_{39}]^{8-}$ anions *via* terminal oxygen atoms (O18, O41) with Ce–O_d distances of 2.562(17) and 2.495(18) Å, forming the A and B chains on the two sides of the

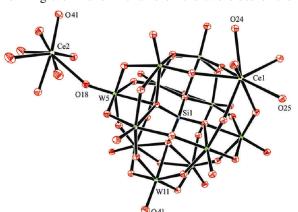


Fig. 1. ORTEP drawing of ${\bf 1}$ with displacement ellipsoids at the 50 % probability level.

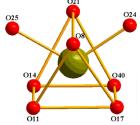


Fig. 2. Coordination polyhedron around Ce(1) in 1. Hydrogen atoms are omitted for clarity.

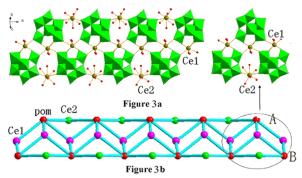


Fig. 3. a) Polyhedral representation of 1 showing the doublechain structure. All the hydrogen atoms and water molecules have been omitted for clarity; b) Schematic view of the double-chain structure.

Fig. 4. Schematic view of a corrugated layer in 1 (the green sticks symbolize the links between Ce and SiW_{11} clusters, and the purple sticks symbolize the links between K and SiW_{11} clusters; color online).

zigzag chain. As a result, compound 1 displays a novel one-dimensional double-chain structure (Fig. 3). In addition to two terminal oxygen atoms of the two $[\alpha\text{-SiW}_{11}\text{O}_{39}]^{8-}$ anions, the coordination environment of the Ce(2) cation center is completed by six water molecules ($d(\text{Ce-OH}_2)\ 2.52(2)\ -\ 2.746(19)\ \text{Å}$). The coordination sphere of the eight-coordinate Ce(2) cation displays a distorted tricapped trigonal prism configuration. The groups of O2w, O9w, O41 and O1w, O6w, O7w form the two trigonal planes, and O18 and O8w occupy the cap sites.

 K^+ cations link the double-chains to form an infinite corrugated layer structure (Fig. 4). The coordination sphere of the K^+ cation is defined by two terminal oxygen atoms (O13 and O30) and one bridging oxygen atom (O35) from the $[\alpha\text{-SiW}_{11}\text{O}_{39}]^{8-}$ anion of a double-chain, two terminal oxygen atoms (O15

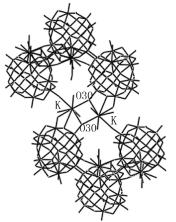


Fig. 5. The coordination environment of the potassium ions.

and O30) from two adjacent $[\alpha\text{-SiW}_{11}O_{39}]^{8-}$ anions of another double-chain, and three water molecules $(d(K-O)\ 2.73(2)\ -\ 3.095(18)\ \text{Å})$. Because of the presence of an inversion center, there are two such K^+ cations which results in a double K-bridging. This is similar to the location of the Na1 atom in Na₅[(A- α -SiW₉O₃₃H₃)₂ K{UO₂(H₂O)}₂] reported by our group [22] (Fig. 5). Both K^+ cations share the same terminal oxygen atom (O30) of the $[\alpha\text{-SiW}_{11}O_{39}]^{8-}$ anions.

Due to the existence of coordinated and interstitial water molecules, there are multifold hydrogen bonds between the layers with $O\cdots O$ distances in the range of 2.514-3.035 Å to form a three-dimensional architecture.

FT-IR spectrum

The IR spectrum of **1** shows that the POM anions are in the basic Keggin structure. The characteristic peaks at 954, 883, 819, and 683 cm⁻¹ are attributed to $v_{as}(W=O_d)$, $v_{as}(Si-O_a)$, $v_{as}(W-O_b-W)$, and $v_{as}(W-O_c-W)$, respectively. Compared to α -K₈SiW₁₁O₃₉·13H₂O [23], the IR spectrum indicates that the polyoxoanions in compound **1** are slightly distorted due to the incorporation of Ce^{III} ions. The strong peak at 1620 cm⁻¹ is assigned to the deformation vibrations of interstitial and coordinated water molecules.

UV spectrum

The UV spectrum of ${\bf 1}$ in aqueous solution shows three absorption bands at approximately 195, 222 and 251 nm. The absorption at 195 nm is attributed to the $O_d \to W$ charge transfer. The absorptions at 222

and 251 nm can be ascribed to $f \rightarrow f$ transitions of Ce^{III} consistent with reference [24]. The absorption of $O_{b/c} \rightarrow W$ (expected at $ca.\ 250-270$ nm) [25] might be overlapped by this band.

TG analysis

The TG curve of 1 in the temperature range of 30-600 °C shows a total weight loss of 11.5% which is in good agreement with the calculated value of 11.2%, corresponding to the removal of all water molecules. The sample weight was unchanged at temperatures higher than 552 °C.

Magnetic properties

The variable-temperature magnetic susceptibility of 1 was studied in the temperature range of 2-300 K. The experimental data plotted as χ_m versus T are shown in Fig. 6, the $\chi_{\rm m}T$ vs. T curve given as an inset. As the temperature decreases, the χ_m value increases from $0.015 \text{ cm}^3 \text{ mol}^{-1}$ at 300 K to a maximum of 0.79 cm³ mol⁻¹ at about 2 K. The experimental $\chi_{\rm m}T$ value steadily decreases upon cooling from $4.38 \text{ emu K mol}^{-1}$ at 300 K to $1.58 \text{ emu K mol}^{-1}$ at about 2 K. At r.t., the comparison of the measured value $\mu_{\rm eff} = 5.80 \ \mu_{\rm B}$ to the spin-only calculated value $(3.48 \mu_{\rm B})$ suggests the contribution of an orbit magnetic moment. In the temperature range of 94 – 295 K, the magnetic susceptibility of 1 follows the Curie-Weiss law, $\chi_{\rm m} = C/(T - \theta)$ with a Curie constant C =5.23 emu K mol⁻¹ and a Weiss constant $\theta = -78.4$ K. The result indicates the occurrence of antiferromagnetic coupling. According to the crystal structure of 1, it can be assumed that the antiferromagnetic behavior

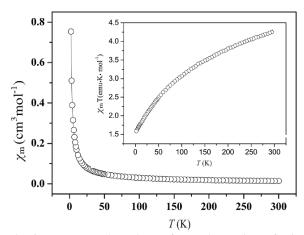


Fig. 6. Temperature dependence of χ_m and $\chi_m T$ (inset) for 1.

of 1 may be due to superexchange interactions between the Ce(2) ions through the WO₆ octahedra [26]. As the temperature decreases from 94 to 2 K, the deviation from the Curie-Weiss law of the magnetic susceptibility indicates the presence of strong spin-orbit coupling interactions and a crystal field effect at low temperature.

Conclusions

In summary, a new complex 1 has been synthesized and structurally characterized. Because of the different coordination of the Ce^{III} cations with $[\alpha\text{-SiW}_{11}O_{39}]^{8-}$ anions, a novel one-dimensional double-chain structure is constructed. The magnetic studies of compound 1 demonstrate an anti-ferromagnetic superexchange interaction between the Ce(2) ions. In future work, we will explore if other lanthanides can form an analogous structure or if novel Keggin polyoxoanion-based extended structures can be realized by adding appropriate ligands.

Experimental Section

General procedures

All reagents were purchased and used without further purification. α -H₄SiW₁₂O₄₀ was synthesized according to published procedures [23] and identified by its IR spectrum. Elemental analyses (W, Ce, K) were carried out with a Leaman inductively coupled plasma (ICP) spectrometer. The IR spectrum with KBr pellets was obtained on an Alpha Centaur FT/IR spectrometer in the 400 – 4000 cm⁻¹ region. The UV spectrum was recorded on a 756 CRT UV/Vis spectrophotometer. TG analysis was performed on a Perkin-Elmer TGA7 instrument in an atmosphere of N₂ with a heating rate of 10 °C min⁻¹. The variable temperature magnetic susceptibility measurements for 1 were carried out on a Quantum Design MPMS-5SQUID magnetometer with an applied field of 1000 Oe. A diamagnetic correction was estimated from Pascal's constants.

Synthesis of $K_2H_2\{Ce(H_2O)_6[Ce(H_2O)_2(\alpha\text{-}SiW_{11}O_{39})]\}_2 \cdot 26H_2O(1)$

Ce(NO₃)₃·6H₂O (0.1102 g, 0.26 mmol) was dissolved in 15 mL of water, and the solution was heated to about 80 °C. A solution (10 mL) containing α -H₄SiW₁₂O₄₀ (0.39 g, 0.13 mmol) was added, and the mixture was stirred for 15 min. The pH value of the resulting solution was adjusted to 6.23 with KOH (1 mol·L⁻¹), and then the solution was stirred for ca. 1 h. Cooled to r. t., the solution was filtered and concentrated under ambient conditions. After 27 d, yellow crystals suitable for X-ray diffraction were

Table 1. Crystal data and structure refinement for 1.

Empirical formula $H_{86}Ce_4K_2O_{120}Si_2W_{22}$ Formula weight 6746.24
E
C 1 1 1 12
Color, habit yellow, block
Cryst. size, mm ³ $0.12 \times 0.11 \times 0.10$
Temperature, K 293(2)
Crystal system triclinic
Space group $P\bar{1}$
a, Å 11.707(5)
b, Å 12.449(5)
c, Å 18.128(5)
α , deg 77.132(5)
β , deg 83.589(5)
γ , deg 86.316(5)
$V, Å^3$ 2557.4(17)
Z 1
$D_{\rm calc}$, g cm ⁻³ 4.38
F(000), e 2972
<i>hkl</i> range $-13 \le h \le 14, -15 \le k \le 1$
$-20 \le l \le 22$
Radiation; λ , \mathring{A} Mo K_{α} ; 0.71073
Absorption coefficient, mm ⁻¹ 26.6
Absorption correction empirical
θ range for data collection, deg 1.68 – 25.75
Measured reflections 13596
Independent reflections, R_{int} 9572, 0.03
Completeness,% 97.7
Observed reflections 7002
Data / ref. parameters 9572 / 673
Maximun shift/error 0.000
Extinction coefficient 0.00015(3)
GOF on F^2 1.131
Final R1, wR2 $[I \ge 2\sigma(I)]$ 0.057, 0.164
Final R1, wR2 (all data) 0.086, 0.177
Largest diff. peak / hole, e $Å^{-3}$ 3.19 / -7.85

 $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|; wR2 = \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]^{1/2}.$

Table 2. Selected bond lengths (Å) for 1.

Ce(1)-O(17)	2.427(16)	Ce(1)-O(24)#3	2.481(16)
Ce(1)-O(11)	2.438(16)	Ce(1)-O(8)	2.543(17)
Ce(1)-O(14)	2.453(16)	$Ce(1)-O(25)^{\#4}$	2.561(16)
Ce(1)– $O(40)$	2.474(16)	Ce(1)-O(21)	2.568(17)
Ce(2)-O(41)	2.495(18)	Ce(2)-O(18)	2.562(17)
Ce(2)-O(6W)	2.52(2)	Ce(2)– $O(2W)$	2.585(19)
Ce(2)-O(8W)	2.54(2)	Ce(2)-O(7W)	2.63(2)
Ce(2)-O(1W)	2.55(2)	Ce(2)-O(9W)	2.746(19)

Symmetry transformations used to generate equivalent atoms: $^{\#3}$ -x+1, -y, -z+1; $^{\#4}$ -x, -y, -z+1.

obtained (31% yield, based on Ce). Elemental analysis: calcd. W 59.95, Ce 8.31, K 1.18; found W 58.86, Ce 7.96, K 1.03. – IR (solid KBr pellet): v = 1620(s), 1003 (m), 954 (m), 883 (m), 819 (w), 686 (m), 524(m) cm⁻¹.

X-Ray crystallography

The data were collected on a Bruker Smart CCD diffractometer with graphite-monochromated MoK_{α} radiation at 293 K. An empirical absorption correction was applied.

The structure was solved by Direct Methods using the program SHELXS-97 and refined by full-matrix least-squares methods on F^2 using SHELXL-97 [27]. All non-hydrogen atoms were refined anisotropically. A summary of the crystallographic data and structure determination is listed in Table 1, and selected bond lengths are presented in Table 2. The appearance of a peak of -7.85 e Å $^{-3}$ 0.6 Å away from Ce(2) is attributed to series termination errors.

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition number CSD-418602.

Acknowledgements

This work was supported by the Analysis and Testing Foundation of the Northeast Normal University. We thank Prof. Zhong-ming Su's research group for the X-ray diffraction data collection.

- [1] a) D. B. Mitzi, Chem. Mater 2001, 13, 3283 3298;
 b) D. B. Mitzi, Prog. Inorg. Chem. 1999, 48, 1 121.
- [2] a) M. Yagi, K. Sone, M. Yamada, S. Umemiya, Chem. Eur. J. 2005, 11, 767-775; b) D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105-121.
- [3] M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin 1983.
- [4] M. T. Pope, A. Müller, Angew. Chem. 1991, 103, 56 70; Angew. Chem. Int. Ed. 1991, 30, 34 – 48.
- [5] P. Gouzerh, A. Proust, *Chem. Rev.* **1998**, 98, 77 111.
- [6] R. C. Howell, F. G. Perez, S. Jain, W. D. Horrocks, Jr., A. L. Rheingold, L. C. Francessconi, *Angew. Chem.* 2001, 113, 4155–4158; *Angew. Chem. Int. Ed.* 2001, 40, 4031–4034.
- [7] X. B. Cui, J. Q. Xu, Y. Li, Y. H. Sun, G. Y. Yang, Eur. J. Inorg. Chem. 2004, 1051 – 1055.
- [8] C. L. Hill (Ed.), Chem. Rev. 1998, 98, 1 387.
- [9] L. C. W. Baker, V. E. S. Baker, K. Eriks, M. T. Pope, M. Shibata, O. W. Rollins, J. H. Fang, L. L. Koh, *J. Am. Soc. Chem.* 1966, 88, 2329 – 2331.
- [10] a) L. C. W. Baker, V. E. S. Baker, J. Inorg. Nucl. Chem. 1967, 29, 2935 – 2944; b) R. D. Peacock, T. J. R. Weakley, J. Chem. Soc. A 1971, 1836 – 1839.
- [11] a) Y. K. Shan, Z. X. Liu, Sci. China, Ser. B 1991, 34, 313; b) Y. K. Shan, Z. X. Liu, Acta Chim. Sin. 1992, 50, 357 364; c) R. Q. Sun, H. H. Zhang, S. L. Zhao, C. C. Huang, X. L. Zheng, Chin. J. Struct. Chem. 2001, 20, 413 417.
- [12] M. Sadakane, M. H. Dickman, M. T. Pope, Angew. Chem. 2000, 112, 3036–3038; Angew. Chem. Int. Ed. 2000, 39, 2914–2916.

- [13] P. Mialane, L. Lisnard, A. Mallard, J. Marrot, E. Antic-Fidancev, P. Aschehoug, D. Vivien, F. Secheresse, *Inorg. Chem.* 2003, 42, 2102 2108.
- [14] J. Y. Niu, J. W. Zhao, J. P. Wang, J. Mol. Struct. **2004**, 701, 19 24.
- [15] J.P. Wang, J.W. Zhao, X.Y. Duan, J.Y. Niu, Cryst. Growth Des. 2006, 6, 507-513.
- [16] F. Y. Li, Y. G. Wei, G. G. Gao, L. F. Fan, Z. K. Li, *Inorg. Chim. Acta* 2006, 359, 3795 3799.
- [17] J. Y. Niu, J. W, Zhao, J. P. Wang, *Inorg. Chem. Commun.* 2004, 7, 876 879.
- [18] P. Mialane, A. Dolbecq, E. Rivière, J. Marrot, F. Sécheresse, Eur. J. Inorg. Chem. 2004, 33 – 36.
- [19] C. Zhang, R. C. Howell, K. B. Scotland, F. G. Perez, L. Todaro, L. C. Francesconi, *Inorg. Chem.* **2004**, *43*, 7691–7701.
- [20] C. Lescop, E. Belorizky, D. Luneau, P. Rey, *Inorg. Chem.* 2002, 41, 3375 3384.
- [21] J. Y. Niu, M. L. Wei, J. P. Wang, D. B. Dang, Eur. J. Inorg. Chem. 2004, 160 – 170.
- [22] Y. G. Chen, F. X. Meng, H. J. Pang, Y. Sun, J. Cluster Sci. 2007, 18, 396 – 405.
- [23] A. Teze, G. Herve, *Inorg. Synth.* **1990**, 27, 85–96.
- [24] Q. Su, *Chemistry of Rare Earths* (Henan Science and Technology Publication), Zhengzhou **1993**.
- [25] J. Y. Niu, J. P. Wang, *Introduction of Heteropoly Compounds*, Henan University Press, Kaifeng, P. R. China, 2000, p. 189.
- [26] J. Lu, E. Shen, M. Yuan, Y. Li, E. Wang, C. Hu, L. Xu, J. Peng, *Inorg. Chem.* 2003, 42, 6956 – 6958.
- [27] G. M. Sheldrick, SHELXS/L-97, Programs for Crystal Structure Determination, University of Göttingen, Göttingen (Germany) 1997.